针对传统灰狼优化算法处理复杂优化问题时易于陷入局部最优,提出基于混沌Tent映射与精英高斯扰动的非线性灰狼优化算法。根据混沌Tent映射与对立学习机制,保证较优个体的同时,设计种群初始化方法,可使个体尽可能均匀分布;为有效均衡个体的局部开发和全局勘探能力,设计一种非线性收敛因子控制策略;在头狼选取上引入面向精英个体的高斯扰动机制进行位置更新,使算法跳出局部最优。若干基准函数优化求解的测试结果表明,该算法可以有效提升寻优精度和收敛速度。