摘要

由于一个评论往往会涉及多种方面类别及情感倾向,而传统注意力机制难以区分方面词和情感词的对应关系,从而影响评论同时存在多种方面类别时的情感极性分析。为了解决上述问题,提出了一种基于上下文感知的方面类别情感分类模型(MA-DSA)。该模型通过重构方面向量捕获句子中更多样且有效的语义特征,并将其融入上下文向量,然后将上下文向量通过DiSA模块进一步捕捉句子内部情感特征,确定方面词与情感词的关系,进而对指定方面类别进行情感分类。在Sem Eval的三个数据集上的实验结果表明,MA-DSA模型在Restaurant-2014数据集上的三个指标值均优于基准模型,证明了该模型的有效性。