工业循环冷却水系统运行状态预测是维护工业设备正常运行的重要保障。为此,提出一种基于深度卷积神经网络的智能工业循环冷却水系统运行状态预测方法。该方法根据工业循环冷却水水质特征,使用工业循环水在线仪表采集p H值、碱度、硬度、氯离子等实时数据,设计了深度卷积神经网络框架,在每层网络中加入Dropout层,以避免神经网络训练过拟合。利用某电厂的实际水质测量数据对该方法进行有效性验证,结果表明,该方法的预测结果准确率可达94%,且泛化能力良好,优于现有其他方法。