摘要
为解决现有基于图像处理的织物瑕疵检测算法实时性较差、正确率偏低等问题,提出一种包含学习和检测2个阶段的瑕疵检测算法。通过对无瑕疵模板图像的梯度能量特征及其分布特性的学习,自适应获得检测阶段所需的参数。一方面利用积分图原理将任意大小的图像块内的求和运算化简为三次加法运算,快速提取织物图像的梯度能量特征,实现织物瑕疵的实时检测,另一方面利用核函数拟合特征参数分布,结合均值漂移法求解分布峰值获得自适应的瑕疵判定阈值参数,实现织物瑕疵的准确分割。通过实验将本文算法与现有基于局部二值模式特征、小波特征、规则带特征等算法进行对比,针对包含3种纹理6类瑕疵的织物图像数据集的测试结果显示,本文算法平均处理时间为56 ms,正确率为97%。
- 单位