协同过滤算法广泛应用于推荐系统中,论文针对传统协同过滤算法中数据稀疏性及推荐准确率不高的问题,提出了一种改进的协同过滤算法。首先通过SVD++算法对用户-项目评分矩阵进行填充,初步缓解数据的稀疏性问题,然后通过计算相似度引入项目属性,最后通过改进Slope One算法对评分矩阵进行二次预测计算,提高推荐算法的准确度。在数据集MovieLens100K数据集上对论文提出的混合推荐算法作五折交叉实验,结果表明混合算法提高了推荐系统的预测准确度。