摘要

[目的]针对水面船舶舷号检测问题,提出一种面向水面无人艇的实时船舶舷号检测方法。[方法]基于原始的单阶段目标检测模型(YOLO),引入注意力机制,利用空间信息交互模块和分割注意力融合方法,提升神经网络对重要目标区域的敏感度。考虑先验知识对模型精度的影响,结合自适应锚框算法和正样本增强策略提高回归精度。针对深度神经网络(DNN)收敛困难的问题,改进损失函数,在保证网络收敛速度的同时提高神经网络训练的稳定性。最后,将改进的目标检查模型部署在无人艇上进行有效性验证。[结果]结果表明,所提算法在3级海情下能够准确识别船舶目标及其标志舷号,相比于原模型,改进后的YOLO算法在全类平均精度(mAP)方面提高了14%,识别速度满足实时要求。[结论]研究证明了所提舷号检测方法满足无人艇实时识别舷号任务的要求,并在复杂海洋环境中仍然具备识别能力。

全文