摘要

无监督领域自适应(Unsupervised Domain Adaptation,UDA)旨在帮助模型在跨域分布差异条件下从带标注的源域中学习到知识,以迁移至无标注的目标域。当前先进的域自适应方法主要通过直接对目标域与源域分布对齐来实现,其中特征往往被当作一个整体对象用于开展域间自适应任务,忽略了特征中的任务关联信息(域间不变、域内独特信息)与无关信息(颜色对比度、图像风格)耦合的情况,使得模型难以把握关键的特征信息,从而导致次优化。针对上述问题,提出了一种基于任务关联特征解耦网络的无监督领域自适应分类方法(Task Relevant Feature Separation Network,TRFS),通过对域间风格混合干扰下的特征与原始特征的注意力进行一致性的学习,来帮助网络提炼出与下游任务相关的特征权重,并进一步采用权重差获取任务无关特征权重,而后通过正交函数约束推远任务关联与无关特征,实现特征解耦;设计了任务特征细化解耦层,减轻配对特征与域独特特征混淆的情形,优化模型对分类判别的精度。此外,为了提升伪标签质量,引入基于记忆力银行的领域聚合伪标签生成方法,用于降低伪标签噪声。综合实验结果表明,所设计解耦模块具有良好的即插即用性,能够提升自适应方法的性能;且所提方法相比其他先进的域适应方法具有明显的优势,其中在Office-Home数据集上达到了73.6%的分类精度。