摘要

在高光谱图像(HSI)分类中,由于标记样本的获取十分耗时耗力,少样本问题一直是该领域的重要研究问题之一.本文先对HSI进行多种空间特征提取,并将这些特征与谱特征融合,以形成多种空-谱特征.然后对多种空-谱特征及其融合进行了实验对比分析.在3个基准HSI数据集上的实验结果表明,在少样本条件下,空-谱特征融合下的HSI分类精度显著高于仅用谱特征的分类精度;多空-谱特征融合方法的分类精度显著优于单一空-谱特征方法的分类精度.