钓鱼网站每年在电子商务、通信、银行等领域给用户造成极大损失,成功有效的防范钓鱼网站成为一项艰巨任务。本文通过对实际数据的分析,提取了URL相关特点、网页文本内容两方面特征描述网页,然后对不同特征构建相应分类器,根据增量学习思想优化各分类器,提升算法在线学习能力。最后采用分类集成的方法综合各个分类器的预测结果,达到对钓鱼网站在线智能检测的目标。实验表明,集成分类具有良好的在线学习能力和泛化能力。