摘要

联邦学习可以使客户端在不公开其本地数据的情况下合作训练一个共享模型,此种学习方式保证了客户端数据的隐私性。但是,与集中式学习相比,客户端数据的异构性会大大降低联邦学习的性能。数据异构使本地训练的模型向不同方向更新,导致聚合后的全局模型性能较差。为了缓解数据异构对联邦学习造成的影响,算法提出了基于模型对比和梯度投影的联邦学习算法。此算法设计了一个新的损失函数。新损失函数利用全局模型与本地模型的差异性来指导本地模型的更新方向,并且通过降低全局梯度与本地梯度的冲突来提高模型准确度。实验表明相比其他算法,此算法可以在不增加任何通信开销的情况下达到更高的准确度。