摘要
为了高效而准确地对车内噪声品质进行评价,针对B级车稳态工况下的车内噪声,建立了基于径向基函数(RBF)神经网络的声品质评价系统。用等级评分法对30个稳态噪声信号进行了主观评价试验,并通过相关分析得出了对声品质有重要影响的客观参量。采用RBF神经网络构建了车内噪声品质的评价模型,其预测平均相对误差为4.5%。以评价模型为基础,采用模块化设计方法和多线程并行处理技术,设计了基于虚拟仪器的声品质评价系统。测试结果表明:该系统比传统的主观评价试验系统的测试时间缩短了90%,并提高了评价结果的质量。
- 单位