在指纹分类和识别算法中,提取的奇异点(core点和delta点)数目和奇异点的准确位置是非常重要的.介绍了一种基于Gaussian-Hermite矩分布属性的自适应指纹奇异点定位方法,为了准确地确定奇异点,用到了指纹图像在多种尺度下的不同阶Gaussian-Hermite矩分布,并用一种基于主分量分析(principal component analysis,简称PCA)的方法分析指纹图像的Gaussian-Hermite矩分布.实验结果表明,该算法能够准确地确定奇异点位置.