区域VOCs聚集态势RF-LSTM智能感知方法

作者:陆秋琴; 潘婉琪; 黄光球
来源:安全与环境学报, 2022, 22(05): 2832-2844.
DOI:10.13637/j.issn.1009-6094.2021.1051

摘要

为了提高VOCs质量浓度预测精度,实现VOCs聚集态势感知,采用RF-LSTM方法提出了基于浓度预测的VOCs聚集态势感知法,简称聚集态势感知法,该方法将态势感知的概念引入VOCs研究,将区域VOCs聚集态势直观展示出来。首先在区域网格划分的基础上利用距离平方反比进行空间插值,收集区域VOCs数据信息;其次利用随机森林结合长短时记忆神经网络对网格VOCs质量浓度进行预测;最后根据预测结果计算VOCs聚集态势值,并将态势感知结果可视化。以西安市某区为例进行VOCs质量浓度预测及VOCs聚集态势感知,结果表明:与RF模型、LSTM模型相比,RF-LSTM模型减少了输入变量,实现了VOCs质量浓度预测模型输入参数的优化,降低了预测模型的复杂度,提高了预测精度,得到RF-LSTM模型的平均绝对误差、均方根误差、平均绝对百分比误差分别为6.24、9.75、10.36%;VOCs聚集态势感知能够对区域VOCs聚集的发展趋势和状态进行可视化,传达了更多的信息,具有一定的实用价值。因此,该聚集态势感知方法可以为区域VOCs污染防治和预警提供决策支持。

全文