摘要

针对疲劳驾驶检测模型需要的实时性与轻量性,在SSD的基础上提出了SSD-MA网络作为人脸部件检测网络。该网络通过替换原SSD主干网络为MobileNetv3,使得模型参数量骤减,加上AFF注意力特征融合了不同尺寸的特征图,进一步提升了对人眼小目标的检测性能,并结合疲劳参数Peclos可以准确地输出被测人员的疲劳状态。经实验验证,SSD-MA在验证集上的mAP值达到了96.9%,较原SSD-300提高了5%,网络整体体积缩减了89%。

  • 单位
    江苏理工学院

全文