摘要
随着人工智能的不断普及,智能变电站电力设备图像自动化检测系统的建立迫在眉睫。由于智能变电站电力设备图像数据集样本较少、场景复杂且电力设备部件相似度较高,传统图像检测算法无法对电力设备部件做到实时定位和准确识别。针对小样本目标检测识别难题,基于网络的深度迁移学习可以在不同数据集之间建立特征上的关联,能够较好地学习现有小样本智能变电站电力设备数据集的特征。该文采用迁移学习的方法,提出一种利用单阶段多框检测器(singleshotmultiboxdetector,SSD)的智能变电站电力设备图像目标检测算法,并根据智能变电站电力设备数据集相关特点添加特征提取层,重新设计特征预测框数量及比例,采用软性惩罚非极大值抑制(softpunishnon-maximum suppression,Soft-PNMS)等改进方法进行优化,能够自适应于小样本电力设备数据集的检测。此方法通过200张智能变电站电力设备训练集、50张智能变电站电力设备测试集,实现了在小样本复杂背景下对电力设备部件的分类和定位,验证了所提算法的有效性。研究结果表明,对于绝缘子、套管、电流互感器、油枕、螺帽5类电力设备,该方法的平均精准度达到了91.1%,比常规SSD卷积神经网络分类器平均精准度提高13%,平均漏检率下降3%,平均误识别率下降4‰,该方法为小样本电力设备智能化检测奠定了理论基础。
- 单位