针对影评文本情感分析准确性不高的问题,本文提出一种基于影评领域词典结合机器学习的情感分析方法。首先,构建完备的影评领域相关词典,如程度副词词典、否定词词典和网络用词词典。然后,利用文本相似度的方法(TSIM)对训练数据集进行去重处理,并提出三类特征:词性、句法、依存进行选择。最后,利用NB和SVM相结合的分类方法对影评进行情感分类。实现结果表明,该方法相对于仅仅基于传统的机器学习的方法,具有更准确的分类精度。