摘要

高光谱图像(Hyperspectral Images,HSI)在采集过程中常受到多种类型的噪声干扰,会直接影响其在后续应用中的精度,因此HSI的去噪是一项十分重要的预处理过程。低秩表示(Low-Rank Representation,LRR)模型能很好地满足HSI的光谱性质,但该框架下字典的选择尤为重要,在当下仍是一个开放性的问题。同时,典型去噪方法仅考虑了图像的局部相关性,已不能满足去噪要求,非局部相似性在图像中也是不可忽略的。基于LRR,文中提出了一种新的HSI去噪算法。首先,综合考虑噪声的类型,选取具有更全面的噪声判别能力的字典;其次,在对图像分块处理的前提下,通过聚类的方式引入非局部相似信息,将相似的图像块联合起来进行低秩表示。在模拟Indian Pines数据集以及EO-1 Hyperion真实数据集上的实验结果均表明,相较于目前主流的HSI去噪方法,无论是在图像的目视效果还是在模拟数据集的定量评价指标下,所提方法均有显著提升。