摘要

针对机器人在障碍物分布密集的复杂环境中运行时,动态窗口法(dynamic window approach, DWA)易出现避障失败或规划不合理的情况,提出一种基于多目标粒子群优化算法(multi-objective particle swarm optimization, MOPSO)的改进DWA规划算法。在建立多障碍物环境覆盖模型的基础上,提出一种障碍物密集度的判断方法;优化DWA算法中的子评价函数;利用改进的MOPSO算法实现DWA权重系数的动态调整,将权重系数的自适应变化问题转化为多目标优化问题;根据路径规划的要求将安全距离和速度作为优化目标,并使用改进的MOPSO算法对相应的多目标优化模型进行优化求解。仿真结果表明,该算法使机器人有效地通过障碍物密集区的同时兼顾了运行的安全性和速度,具有更好的路径规划效果。