摘要
针对原始振动数据无监督特征学习问题,提出了一种深度小波自动编码器(deep wavelet automatic encoder,DWAE)与鲁棒极限学习机(extreme learning machine,ELM)相结合的滚动轴承的智能故障诊断方法。首先,利用小波函数作为非线性激活函数设计小波自动编码器从而有效地捕获信号特征。其次,利用多个小波自动编码器构造一个深度小波自动编码器来增强无监督特征学习能力。最后,采用鲁棒极限学习机作为分类器,对不同的轴承故障进行分类识别。对实验所得的轴承振动信号进行对比分析,结果验证了研究结果能够在原始振动数据无监督特征学习的条件下该方法优于传统方法和标准深度学习方法。
-
单位成都工业职业技术学院; 机电工程学院; 武汉理工大学