摘要
随着汽车保有量日益增多,车牌识别已经成为智能化交通系统不可分割的一部分,在道路交通控制方面发挥着重要作用。由于实际交通环境的复杂性,传统的车牌识别算法易受到光线明暗不均、天气恶劣多变、倾斜角度大等诸多因素的干扰,具有很大的局限性。针对这一问题,本文提出了一种基于深度学习的复杂场景下车牌识别算法。从车牌识别的一般流程出发,设计基于HOG+SVM目标检测定位算法,实现对车牌的定位与筛选,最后利用CNN卷积神经网络对车牌字符实现识别。实验结果表明,在复杂多变的应用场景下,本文所提出的基于深度学习的车牌识别算法精度高、鲁棒性强。
- 单位