摘要
基于信号分析的异步电动机的转子断条与偏心故障诊断方法中,常用传统的电机电流信号特征分析(MCSA)方法。由于采样频率偏低、强大的基波旁瓣效应等因素的影响,会导致特征频率成分被淹没、难以量化故障程度等问题。因此,提出了一种基于自适应粒子群优化逐序支持向量机(APSO-SSVM)的异步电动机故障诊断方法。首先,利用经验小波变换(EWT)对原始信号进行滤波;然后,对滤波后的信号进行特征提取并输入到SSVM诊断模型中;最后,通过APSO算法确定各次序下SVM模型的最佳超参数,从而实现转子断条数量的精确故障诊断。
-
单位武汉科技大学; 武汉第二船舶设计研究所