摘要

准确分类电商平台中用户评论所包含的多个方面的情感极性,能够提升购买决策的有效性。为此,提出一种融合ChineseBERT和双向注意力流(Bidirectional Attention Flow, BiDAF)的中文商品评论方面情感分析模型。首先,通过融合拼音与字形的ChineseBERT预训练语言模型获得评论文本和方面文本的词嵌入,并采用从位置编码和内存压缩注意力两个方面改进的Transformer来表征评论文本和方面文本的语义信息。然后,使用双向注意力流学习评论文本与方面文本的关系,找出评论文本和方面文本中关键信息所对应的词语。最后,将Transformer和双向注意力流的输出同时输入到多层感知机(Multilayer Perceptron, MLP)中,进行信息级联和情感极性的分类输出。测试结果表明,提出的模型在两个数据集上的准确率分别为82.90%和71.08%,F1分数分别为82.81%和70.98%。

全文