摘要

关联规则挖掘是数据挖掘中的重要领域,考虑到当前数据的大规模、高维度、模态多样及类型复杂等特性,传统关联规则挖掘算法已无法适应大数据的需求,粒子群优化算法作为一种高效的智能优化算法,为其提供了一种全新的解决方案,近年来被广泛应用于该领域。本文首先对粒子群优化算法的基本原理及关联规则的基本概念进行了详细介绍,其次回顾了粒子群优化算法的研究进展,分析了粒子群优化算法在关联规则挖掘中的研究, 包括常用的数据转换方法、编码方式及评估指标,并与其它在关联规则挖掘中被广泛应用的算法进行了对比,总结了各自的优缺点及适用场景。然后对已有改进方法进行了较为系统的分类,即分为基于参数、基于变异机制和混合其他算法的改...