朴素贝叶斯分类在仪表故障判断上的应用

作者:周自强
来源:南华大学学报(自然科学版), 2020, 34(02): 21-33.
DOI:10.19431/j.cnki.1673-0062.2020.02.004

摘要

为了探讨朴素贝叶斯分类在仪表故障判断领域的应用价值,通过将某核电厂压力表故障的历史信息进行分类汇总,将故障的判断转换成文本分类任务,结合朴素贝叶斯分类算法和自然语言处理建立故障的分类模型,实现对新增故障的准确判断。通过验证,朴素贝叶斯分类模型能够对新增故障进行判断分类。测试中需要进行校验类故障准确率能够达到95%以上,其他类故障准确率高于70%。传统故障判断一般是由人来完成,通过贝叶斯分类模型实现对故障的判断,可减轻人员劳动强度,提高工厂维修自动化水平。