摘要

过拟合现象是心理学走向预测科学的重要阻碍。文章综述了机器学习在解决过拟合现象中的价值和实现途径:(1)介绍了过拟合的两种表现形式和现状;(2)分析过拟合的根因,即"高解释力≠高预测力";(3)厘清机器学习的建模逻辑与核心技术在解决过拟合中的作用;(4)利用样例数据和代码说明机器学习统计思想在模型拟合中的具体应用过程。文章指出心理学应从解决实际问题的角度出发,借鉴机器学习的分析思想,避免过拟合,进而提供更准确更稳定的结论和预测模型。

全文