摘要

单目3D目标检测旨在通过单目图像完成3D目标检测,现有的单目3D目标检测算法大多基于经典的2D目标检测算法。针对单目3D目标检测算法中通过直接回归的实例深度估计不准,导致检测精度较差的问题,提出了一种基于高深约束与边缘特征融合的单目3D目标检测算法。在实例深度估计方法上采用几何投影关系下的实例3D高度与2D高度计算高深约束,将实例深度的预测转化为对目标的2D高度以及3D高度的预测;针对单目图像存在图像边缘截断目标,采用基于深度可分离卷积的边缘融合模块来加强对边缘目标的特征提取;对于图像中目标的远近造成的目标多尺度问题,设计了基于空洞卷积的多尺度混合注意力模块,增强对最高层特征图的多尺度特征提取。实验结果表明,在KITTI数据集上的汽车类别检测精度比基准模型提升了7.11%,优于当前的方法。