摘要

激光成像受到环境、设备自身等干扰,使得激光图像含有噪声,当前图像分割方法对噪声干扰鲁棒性差,误分割现象出现概率高,重要信息丢失严重,为了克服当前激光图像分割的弊端,提出了基于人工智能深度学习的激光图像分割方法。首先采用小波变换对激光图像进行特征提取,并对噪声干扰进行抑制处理,然后引入人工智能学习算法对激光图像特征向量进行训练,并根据训练结果对激光图像像素点进行分类,从而实现激光图像分割,最后采用含噪和不含噪的激光图像进行仿真测试。结果表明,对含噪和不含噪的激光图像,人工智能深度学习的分割精度分别达到了91%和95%以上,精度明显高于经典激光图像分割方法,分割效率可以满足激光图像向大规模方向发展的要求。

  • 单位
    晋中学院; 太原学院

全文