摘要
为了快速准确地预测混凝土施工期温度过程线,结合主成分分析,提出了一种基于长短期记忆网络(LSTM)算法的预测模型。以上海崇明岛四滧港和八滧港水闸底板为例,采用主成分分析对混凝土温度场的可能影响因素进行降维,建立以四滧港水闸底板温度数据为基础的LSTM温度过程线预测模型并对输入主成分进行训练,将训练后的模型用于八滧港温度过程线的拟合和预测并与实测结果进行对比。结果表明,该模型预测温度过程线与实际测点温度过程线拟合良好,均方根误差在2℃以内,判定系数接近1,预测结果符合工程精度要求。该预测模型可部分替代有限元反馈分析,从而提高泵闸混凝土温度场预测的效率。
- 单位