摘要

目前,强化学习在无人驾驶领域得到了广泛应用,但是如何提高无人车辆的稳定性并满足在不同工况中同时完成路径跟踪和车辆避障的要求依旧是一个难题。针对无人车辆路径跟踪与避障功能需求,提出一种基于深度确定梯度策略(Deep Deterministic Policy Gradient,DDPG)算法的无人车辆防碰撞控制策略。首先,根据DDPG算法原理和车辆控制模型得到控制系统的输入输出量,并提出一种基于sin函数的变道轨迹规划方式,来提高车辆避障能力。其次,根据控制系统输入输出量设计神经网络控制器以及研究其策略探索方案,并提出一种基于对数函数的奖励塑造方案,以解决奖励稀疏问题。最后,通过仿真实验证明,基于DDPG算法的无人车辆控制策略能够更加安全、稳定地控制车辆完成路径跟踪与避障任务,且控制精度更高。