摘要
狄拉克δ-函数实际上是离散情况下的Kroneckerδ-函数的连续化,它在数学和物理中都有重要的应用.基于广义函数概念引入狄拉克δ-函数的精确定义,证实狄拉克δ-函数不是通常Lebesgue局部可积意义下的普通函数;文中分别以单位矩形脉冲函数、高斯函数、钟形函数和Sinc函数的序列在弱极限意义下来逼近狄拉克δ-函数.另外,验证了狄拉克δ-函数可以作为Heaviside函数的广义导数,以及其高价广义导数,并给出狄拉克δ-函数的卷积性质、伸缩性质、复合变换性质、正交性和狄拉克梳函数,最后引入了狄拉克δ-函数与广义傅里叶变换的关系,以及其在泊松方程Dirichlet边值问题求解中的应用.
- 单位