摘要

针对风电功率超短期预测问题,提出基于快速集合经验模态分解(Fast Ensemble Empirical Mode Decomposition, FEEMD)、样本熵(Sample Entropy, SE)和BPAdaBoost集成神经网络组合的超短期风电功率预测模型。对风电功率原始数据,采用FEEMD方法将其分解为从一系列本征模态函数分量(IMF)和余项;运用样本熵来解决分量个数过多、计算量繁杂的问题,通过PACF(偏自相关系数)筛选出与预测值关联程度高的元素确定输入维数;选用泛化能力强的集成神经网络BPAdaBoost构建单步滚动预测模型并叠加获得最终值。实验结果表明,该组合模型提高了预测精度,具有可行性和有效性。