为检测旁车道车辆驾驶员的并线意图,提升网联车辆巡航跟车的主动安全性,提出了一种基于NAR神经网络学习的迭代循环预测算法。NAR神经网络的训练样本由实际交通环境中的车辆并线数据获得,通过训练的网络预测未来一段时间内旁车的横向行驶轨迹,并根据划定的监控区域计算旁车的切入概率。同时,提出了一种考虑并线概率的跟车距离策略,并应用到网联车辆CACC系统中。结果表明,所提出的并线预测算法能精确计算出旁车的横向换道轨迹,所提出的跟车策略可提升车辆的跟车安全性。