摘要
为建立烟叶霉变快速识别模型,以复烤片烟为研究对象,在高温高湿条件下进行霉变实验,获得不同霉变程度的烟叶样本。应用近红外光谱技术在4000~12000 cm-1范围内对烟叶的近红外光谱进行采集,获得烟叶样本的基础光谱数据。采用小波分解法对基础光谱数据进行解析,选择中间频率小波系数[cd4,cd5]为光谱变量,利用随机森林算法建立了不同霉变烟叶的识别模型。模型对训练集预测准确率达到93.82%,独立测试集判别准确率达到94.84%,对未霉变样品、临近霉变样品和霉变样品的判别均取得了令人满意的结果。
- 单位