摘要
针对目前小麦赤霉病检测依赖人工和实时性较低等缺点,提出一种基于改进YOLOv5s的小麦赤霉病检测算法。首先使用数据增强方式扩充样本集合,增强模型的训练效果,其次引入GhostConv卷积来代替原有Conv卷积,提升计算速度,再次引入卷积注意力机制模块(Convolutional Block Attention Module,CBAM)提升检测精度,最后引入TensorRT网络进行模型检测加速。实验结果表明:改进后的YOLOv5s模型经TensorRT加速后平均精度均值达到0.938,提升了2.6个百分点;单幅图像处理时间为77.8 ms,检测速度提升1.45倍。综上,本次提出的检测方法可以基本满足小麦赤霉病检测对精度和实时性的要求。