摘要
对比了三种不同神经网络模型的生成方式:传统神经网络生成模型,遗传算法训练神经网络模型,以及在第二种方式训练参数的基础上,再使用传统神经网络优化生成模型.论文使用上述三种方法对代表性股票和商品价格进行拟合并预测,通过预测结果准确性和稳定性的比较发现:引入遗传算法后的神经网络在样本内的拟合误差有所降低,而第三种方法在样本外有最低的预测误差和最优稳定性.
- 单位
对比了三种不同神经网络模型的生成方式:传统神经网络生成模型,遗传算法训练神经网络模型,以及在第二种方式训练参数的基础上,再使用传统神经网络优化生成模型.论文使用上述三种方法对代表性股票和商品价格进行拟合并预测,通过预测结果准确性和稳定性的比较发现:引入遗传算法后的神经网络在样本内的拟合误差有所降低,而第三种方法在样本外有最低的预测误差和最优稳定性.