摘要
由于人体运动过程中行为的多样性以及复杂性,导致人体行为特征方向估计模型的效果不理想、准确率偏低等问题。为此,构建基于大数据的人体行为特征方向估计模型。通过人体运动图像中的深度信息分别计算出不同像素点在水平方向和垂直方向的梯度值,再计算不同像素点与邻域像素点之间的差值,获取人体行为特征。对图像中的关键参数进行自适应处理,利用遗传算法对关键参数进行寻优,并构建基于大数据的人体行为特征方向估计模型。实验结果表明,与传统的人体行为特征方向估计模型相比,所提估计模型在人体行为特征方向估计效果以及准确率方面都有较大幅度的提升。
- 单位