摘要
粒子群算法对所有粒子采用相同的惯性权重,忽视了单个粒子的特性,导致收敛精度偏低且易陷入局部最优。结合RMSprop算法中对每一个维度进行自适应设置的策略,提出一种自适应惯性权重粒子群优化算法RMSPSO。考虑粒子每一个维度的速度变化及动量,进行自适应动态惯性权重设置,使算法在全局寻优和局部寻优之间达到良好平衡。选取10个典型测试函数,将改进后的粒子群算法(RMSPSO)与4个主流粒子群算法进行实验对比分析,实验结果表明,在单峰、多峰和组合函数上,RMSPSO算法在收敛速度和收敛精度上取得了明显进步。