摘要

提出了一种基于遗传算法优化的BP神经网络遥感分类方法。该方法兼顾了遗传算法和梯度下降优化算法分别在全局和局部搜索极小点的优势;避免了在BP网络训练过程中过早收敛于局部极小点的风险;与BP算法相比,该算法多次重复过程所得网络的均方差比较稳定。在算法验证中,用中巴地球资源一号卫星数据作为试验数据,详细描述了网络优化过程中的参数设置和关键参数变化过程,比较了该算法与BP算法、最大似然法的分类精度。分类试验表明:该算法不但有较高的执行效率,也能达到很高的分类精度。

  • 单位
    遥感科学国家重点实验室; 中国测绘科学研究院; 中国科学院遥感应用研究所