摘要
合成孔径雷达(Synthetic Aperture Radar, SAR)图像中复杂背景舰船目标的定位和检测,是SAR图像用于海洋监测的关键技术之一。提出一种基于跨连接特征金字塔网络(Cross Connected Feature Pyramid Networks, CCFPN)的SAR图像多尺度舰船目标检测算法,较好地解决了复杂背景下的多尺度目标检测问题。构建CCFPN增强舰船目标深层特征与浅层特征的传递;利用多路空洞卷积提高浅层特征提取能力;使用通道拼接方式丰富融合后特征图的信息量。所提出的算法在公开数据集的检测结果表明:该算法能够实现不同数据集复杂、模糊背景下的舰船多尺度目标检测,算法的平均精度(Average Precision, AP)达到95.62%,整体性能优于现有主流目标检测算法。
- 单位