为了提高文本情感分类准确率,提出基于多约简Fisher向量空间模型和支持向量机的文本情感分类算法。该算法首先采用Fisher判别准则提取TF-IDF特征向量,然后依据低维文档向量空间模型间的相似度对文档进行聚类,减少文档的数目。该算法从维度和数量两个方面对文档的向量空间模型进行约简,以期提高支持向量机的训练速度和分类性能。仿真实验结果表明,该算法具有良好的召回率和分类准确率。