摘要

针对滚动轴承故障特征难以提取的问题,文章提出了基于多尺度模糊熵(MFE)和主成分分析(PCA)相结合的滚动轴承故障特征提取方法。首先利用经验模态分解(EMD)将原始振动信号分解成若干个本征模态函数(IMF),并根据相关系数和峭度值准则剔除虚假IMF分量;然后在不同尺度下求取真实IMF分量的模糊熵值,利用PCA对其进行降维处理,形成能表征不同轴承故障的特征向量,最后借用支持向量机对其进行诊断验证。实验表明,该方法可以有效地提取轴承故障信息,对4种轴承状态的识别率为95%,实现了对轴承故障的精确诊断。

  • 单位
    中国船舶科学研究中心