摘要

提出一种新颖的基于长短期记忆神经网络(Long Short-term Memory, LSTM)和Conformer相结合的步态预测方法,用于解决下肢外骨骼人机协同问题。首先利用LSTM网络模型在时间上对步态数据序列做初步的特征提取及预测,然后采用Conformer模型对LSTM模型输出的数据在时空上作进一步的深度特征提取,并经线性激活单元输出预测结果。利用Pytorch搭建LSTM-Conformer神经网络模型,由采集到的下肢姿态数据组建成的数据集作为输入,将步态所属类别标签作为输出进行验证。实验结果表明,拟议网络模型平均准确率达到了94.89%。

全文