摘要
将支持向量机方法应用于电站锅炉SNCR系统的参数调节,建立了锅炉热态参数和SNCR系统参数与脱硝率之间的关系模型,并与神经网络方法预测结果进行了对比.结果表明,平均相对误差和均方根误差都较后者降低了60%以上,同时线性相关系数r也提高了11%.通过该模型研究了典型工况下尿素用量和稀释水流量对脱硝率的影响,将其与机理性研究得到的结论进行比对,表明该模型所包含的信息很好地反映了样本数据中的规律.最后,研究了两个重要参数——核参数和边界参数对预测性能的影响,发现核参数取值应在[2,6],此时,误差水平较低且对边界参数不敏感.
-
单位能源清洁利用国家重点实验室; 浙江大学