针对传统选煤方法在煤矸识别上效率低、错选率高等问题,提出了视觉图像加卷积神经网络的煤和矸石识别新方法。在团队研发的煤矸分拣机器人平台上采集了煤矸图像数据并进行了扩充处理。以卷积神经网络VGG_16为基础设计改进了模型,通过设置不同的模型参数验证了其在煤和矸石识别上的性能。结果表明,新模型能在占用很少的硬件资源下达到较高的煤矸识别率,当网络学习率设置为0.000 1和正则化系数设置为0.001时模型的性能达到最优,训练集和测试集的识别准确率分别达到了99.73%和97.58%。