摘要

本文针对参数稀疏恢复空时自适应处理(STAP)中的动目标参数估计存在字典失配的问题,提出一种非凸松弛原子范数空时动目标参数估计算法。该方法利用目标回波在角度-多普勒域的稀疏特性,根据连续压缩感知和低秩矩阵恢复理论实现了运动目标方位角和速度的高精度、超分辨率估计,避免了稀疏恢复中的字典失配问题,有效提高了动目标参数估计性能。仿真实验结果表明,相较于已有基于字典网格的稀疏恢复参数估计方法和原子范数估计方法,所提方法具有更高的参数估计精度和对空间紧邻目标的分辨能力。