摘要
针对移动群智感知(MCS)中在用户数据提交阶段的隐私保护困难和因隐私保护造成成本增加的问题,基于本地差分隐私(LDP)保护原理设计出用户提交数据属性联合隐私保护的CS-MVP算法和用户提交数据属性独立隐私保护的CS-MAP算法。首先,基于属性关系构建用户提交数据的隐私性模型和任务数据的可用性模型,利用CS-MVP和CS-MAP算法解决隐私性约束下的可用性最大化问题;并且在边缘计算支持的MCS场景中,构建用户提交数据隐私保护下的三层MCS架构。理论分析证明了两个算法分别在数据属性联合隐私约束下和数据属性独立隐私约束下的最优性。实验结果表明,在相同隐私预算和数据量下,相较于LoPub和PrivKV,基于CS-MVP和CS-MAP算法的用户提交数据恢复正确感知数据的准确率分别平均提高了26.94%、84.34%和66.24%、144.14%。
- 单位