摘要

依靠人工观测锑浮选泡沫特征进行锑浮选工况识别,主观性强、误差大,严重制约浮选性能。基于计算机视觉的识别方法成本低、效果好。针对以上问题,提出一种基于轻量型卷积视觉Transformer(L-CVT)的锑浮选工况识别方法。通过Transformer层的堆叠代替标准卷积中矩阵乘法来学习全局信息,将卷积中的局部建模更替为全局建模,同时引入轻量型神经网络MobileNetv2中的子模块,减少计算成本。所提方法解决了卷积神经网络(CNN)忽略浮选图像内部长距离依赖关系的问题,同时也弥补了视觉Transformer(VIT)缺乏归纳偏置的缺点。实验结果表明,基于所提方法的锑浮选工况识别准确率最高可达93.56%,明显高于VGG16、ResNet18、AlexNet等主流网络,为锑浮选数据在工况识别领域提供了重要参考。