摘要
为了更智能、准确地从高校学生的社交动态中分析学生们的心理健康状态,该研究提出了一种基于多模态社交情感分类的高校学生心理健康分析方法。针对高校学生群体情感表现的复杂性,提出了一种将情感状态表达划分主体情感和侧面情感的分析方法;针对社交动态数据模态的多样性,提出一种多模态数据融合方法。实验结果表明,论文提出的多模态社交情感分类方法在构建的高校学生社交动态数据集上主要情感分类得的准确率达到89.8%,并在多个公开数据集上相对于基准算法提高了4%~6%的分类准确率。
- 单位
为了更智能、准确地从高校学生的社交动态中分析学生们的心理健康状态,该研究提出了一种基于多模态社交情感分类的高校学生心理健康分析方法。针对高校学生群体情感表现的复杂性,提出了一种将情感状态表达划分主体情感和侧面情感的分析方法;针对社交动态数据模态的多样性,提出一种多模态数据融合方法。实验结果表明,论文提出的多模态社交情感分类方法在构建的高校学生社交动态数据集上主要情感分类得的准确率达到89.8%,并在多个公开数据集上相对于基准算法提高了4%~6%的分类准确率。