摘要
针对单一分类器对于轴承故障诊断精度低的问题,提出一种多模型融合的滚动轴承故障诊断方法。首先对于滚动轴承的原始振动信号采用WELCH功率谱算法进行预处理,然后从功率谱中提取相关特征参数构成输入样本,分别采用LDA、SVM、KNN以及PNN四种分类器作为基分类器,再结合集成学习算法构造Stacking集成学习模型,实现对滚动轴承多种故障类型的预测分类。实验结果表明,相比较各个单一分类器,Stacking-SVM集成模型的诊断性能更优,诊断准确率为98%。同时将该集成模型在不同工况下进行实验及抗噪实验,均能达到较高的诊断准确率。可见该集成模型的故障诊断性能稳定,具有一定的鲁棒性和泛化能力。
- 单位