摘要
新型高效的催化剂是突破单体光催化材料载流子低分离和转移效率的重要途径。本文将Ni3Se4和Co Se2纳米粒子锚定在具有良好分散性的g-C3N4纳米片表面,合成了两种新的g-C3N4@Ni3Se4和g-C3N4@Co Se2光催化剂并实现了原位光催化析氢。相当严重的载流子的重组导致g-C3N4单体展现了大约只有1.9μmol?h-1的极差的光催化析氢活性。Ni3Se4和Co Se2纳米颗粒对于加速载流子快速分离和转移的独特作用使得在g-C3N4表面负载Ni3Se4和Co Se2纳米粒子极大地提高了其产氢活性。G-C3N4@Ni3Se4展示了一个大约16.4μmol?h-1的光催化产氢活性并且g-C3N4@Co Se2展现了一个大约25.6μmol?h-1的光催化产氢活性,这分别是g-C3N4单体的8倍和13倍。其中,将Ni3Se4和Co Se2与g-C3N4耦合可以显著提高光吸收密度以及扩展光响应范围。激发态EY在g-C3N4@Ni3Se4和g-C3N4@Co Se2存在时比在g-C3N4存在时展现了更低的荧光强度,并且在g-C3N4@Ni3Se4和g-C3N4@Co Se2体系中可观察到最大的电子转移速率。相比gC3N4@Ni3Se4@FTO和g-C3N4@Co Se2@FTO电极,g-C3N4@@FTO显现了最小的光电流响应密度和最大的电化学,这表明在g-C3N4纳米片表面引入Ni3Se4和Co Se2纳米颗粒增强了光生载流子的分离和转移效率,即基于g-C3N4的金属硒化的合成有效地抑制了光生载流子的复合以及促进了光催化水裂解制氢反应。同时,吸收带边的红移有效地降低了光激电子从价带到导带跃迁的阈值。此外,g-C3N4@Ni3Se4和g-C3N4@Co Se2复合催化剂的zeta电位比g-C3N4的更负,说明样品表面对质子增强的吸附。并且密度泛函理论结果表明:g-C3N4中N位点对H的吸附能为-0.22 e V,还发现氢原子更倾向于吸附在两个硒原子的桥位点上形成Se―H―Se键,并且吸附能为1.53 e V。所有对样品进行的透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)、紫外可见漫反射光谱(UV-Vis-DRS)、瞬态光电流、傅立叶变换红外光谱(FT-IR)等相关表征都展示了彼此匹配的结果。
-
单位北方民族大学; 化学与化学工程学院